Neco Kriel

Contact Information

Phone: Email: Accounts: Affiliation: Interests:	(+614) 01 267 646 neco.kriel@anu.edu.au GitHub • Google Scholar • ResearchGate • OrcID Research School of Astronomy and Astrophysics (RSAA), Australian National University (ANU), Australian Capital Territory, 2611, Australia turbulent plasma/fluid dynamics • mathematical modelling • high performance computing		
Education	1		
 Doctor of Philosophy at the Australian National University 2022 - Present Specialisation: Theoretical & Computational Astrophysics (Exp. Aug. 2025) Supervisors: Professor Mark Krumholz Honours in Science (First Class) at the Australian National University 			
Honours II	2021	Major: Astronomy & Astrophysics Thesis: Fundamental magnetohydrodynamic (MHD) scales in small-scale dynamos.	
		purs (First Class) in Engineering at Queensland University of Technology (QUT) Major: Computer & Software Systems Thesis: Improved modelling of turbulence in agrichemical spray simulations.	
		nematics at Queensland University of Technology <i>Major:</i> Applied & Computational Mathematics	

Exchange Programs

2022	International School for Space Simulations in Kyoto, Japan
2019	Internship (3 months) at the Institute of Mathematical Stochastics, Technische Universität Dresden Summary: Studied the properties of particles that randomly move (i.e., Brownian motion) around in space, and how their trajectories depend on external conditions like wind-drafts and boundaries.
2018	Internship (5 months) at the Optical Materials Photonics and Systems Laboratory, CentraleSupélec Summary: Simulated laser-beams to understand how chaos can be generated and controlled in semicon- ductor lasers with (phase-conjugate) feedback.
	Photonics & Data Science Summer School at the Technical University of Turin

Scholarships & Awards

2022 - 2025	Australian Government Research Training Scholarship			
2022	Joan Duffield Research Award			
2021	RSAA Bok Honours Year Scholarship			
2017 - 2020	Admission to the Dean's List of Academic Excellence at QUT			
2019	Dresden University of Technology Research Scholarship			
2018	Nicolas Baudin Research Travel Grant			

Professional Presentations

• 3 Invited Talks

[26th Mar. 2024] ASA ECR Symposium Series, University of Southern Queensland
[14th Nov. 2023] Plasma physics research group, Canadian Institute for Theoretical Astrophysics
[7th Feb. 2023] Virtual Nordic Dynamo Seminar, Stockholm University

• 5 Conference Talks

[17th Jul. 2023] Interstellar Institute 6 Meeting, Institut Pascal

[14th Apr. 2023] IMAGINE meeting, Nordic Institute for Theoretical Physics

[9th Dec. 2021] The Australian Institute of Physics

[8th Oct. 2021] Specialist Meeting on Galactic magnetic fields, The Royal Astronomical Society [17th Sep. 2021] The Australasian Conference of Undergraduate Research • 4 Outreach Talks [30th Nov. 2023] Open Day at Siding Springs Observatory [5th Mar. 2021] Feast of Facts, RSAA, ANU [Semester 1 2020] Two lectures to the year 12 Advanced Mathematics cohort at my former high school.

Professional Service

Peer-review Contributions

2022 One article in Monthly Notices of the Astronomical Society on the small-scale dynamo.

Community Involvement

2023

• Chair of the Seminar Committee at the RSAA **Key Tasks:** Organised 80+ speakers' visits, scheduled the team of 8's hosting duties, managed annual budget of \$10,000 AUD, and hosted 20+ seminars.

- Organiser of the weekly journal club ('astro-coffee') at the RSAA
- Co-organiser of the student writing retreat at the RSAA
- 2022 | Organising Committee Chair for the Mount Stromlo Student Seminars
- 2018 2020 | STIMULATE Peer Learning Facilitator at QUT

Public Outreach

2022 - Present	Stargazing guide at Mount Stromlo Observatory
2018 - 2020	STEM Widening Participation Ambassador at QUT

Teaching Experience

- Two invited guest lectures to graduate level students. [13th Oct. 2022] 'The small-scale dynamo' for a course on astrophysical gas dynamics at ANU. [7th Oct. 2020] 'Data reduction & the curse of dimensionality' for a final-year data science course at QUT.
- Taught six undergraduate courses spanning advanced courses like Partial Differential Equations through to Visualising Scientific Data at QUT.

Programming topics: Computational Programming (MATLAB, Python), Statistical Analysis & Geospatial Visualisations (R-programming language), programming a Raspberry Pi

Math topics: Fourier Analysis, Matrices, ODEs & PDEs, Vector Calculus

Technical Experience

Programming Languages / Tools

Advanced:	C++ (AMReX, CUDA), Git, LATEX, MATLAB, Python, Visit	Weapons of choice.
Intermediate:	C, C++ (OpenMP, MPI), C#, Java, Mathematica, R	Experienced with.
Basic:	Blender (data visualisation), FORTRAN	Still learning.

Software Development

• QUOKKA (developer of the MHD-module)

Summary: In progress. QUOKKA is a multiphysics, GPU accelerated, adaptive mesh refinement, astrophysical simulation code written in C++17. I implemented all the infrastructure to track quantities on a staggered-grid (cell faces), as well as the solver to evolve ideal MHD physics: a constrained transport (CT) scheme (conserves an absence of magnetic monopoles, viz. $\nabla \cdot \vec{b} = \vec{0}$, to machine precision) along with a HLLD solver (a popular Riemann solver for MHD; resolves all discontinuities in the plasma by construction).

• I like to create small creative code-projects that make use of cool math/algorithms. See here for examples. **Topics:** path optimisation in a 3D network, rendering with signed-distance functions, search algorithms for decision making, gradient descend on surfaces, etc.

Publications

• Citations: 38 • h-index: 4

Peer Reviewed (First Author)

 Kriel, N., Beattie, J. R., Seta, A., & Federrath, C. (2022). Fundamental scales in the kinematic phase of the turbulent dynamo. DOI: 10.1093/mnras/stac969. arXiv: 2204.00828.

Key Tasks: Ran all simulations (3.5 MSU), developed spectral models and fitting algorithms, performed all data analysis (~ 100 terabytes), and wrote the manuscript.

Peer Reviewed (Main Contributor)

1. Beattie, J. R., Federrath, C., Kriel, N., Mocz, P., & Seta, A. (2023). Growth or Decay – I: universality of the turbulent dynamo saturation. DOI: 10.1093/mnras/stad1863. arXiv: 2209.10749.

Key Contributions: Helped develop the theoretical methodology, and draft the manuscript.

Peer Reviewed (Large Collaboration)

1. Beattie, J. R., Krumholz, M., Skalidis, R., Federrath, C., Mocz, P., Crocker, R. M., Seta, A., & <u>Kriel, N.</u> (2022). Energy balance and Alfvén Mach numbers in compressible magnetohydrodynamic turbulence with a large-scale magnetic field. DOI: 10.1093/mnras/stac2099. arXiv: 2202.13020.

Submitted & Under Review

1. <u>Kriel, N., Beattie, J. R., Federrath, C., Krumholz, M. R., & Hew, J. (submitted October 2023)</u>. Fundamental MHD scales – II: the kinematic phase of the supersonic small-scale dynamo. *arXiv preprints*. arXiv: 2310.17036.

Key Tasks: Ran all simulations (5 MSU), developed all theoretical models and computational algorithms (including an improved stencil for computing field-line curvature statistics that guarantees exact accuracy to machine precision; Appendix E), performed all data analysis (~ 10 petabytes), and wrote the manuscript.

2. Beattie, J. R., Federrath, C., Kriel, N., Hew, J. (submitted December 2023). Taking control of compressible modes: bulk viscosity and the compressible turbulent dynamo. *arXiv preprints*. arXiv: 2312.03984.

Key Contributions: Helped derive the magnetic energy equation (Appendix B), with the development of the theoretical model for coupling between compressible and solenoidal kinetic modes, and draft the manuscript.

In Preparation

- 1. Beattie, J. R., Federrath, C., Kriel, N., Mocz, P., Hew, J., & Ripperda, B. (Expected 2024.Q1 submission). Growth or Decay – II: sub-Alfvénic plasmoidal decay into driven turbulence.
- 2. Hew, J., Hosking, D. N., Federrath, C., Beattie, J. R., <u>Kriel, N.</u>, & Seta, A. (Expected 2024.Q1 submission). Exact von-Kármán-Howarth scaling relations for the Hosking integral in non-helical magnetohydrodynamic turbulence.
- 3. Kriel, N., Krumholz, M. R., Wibking, B., & Li, P. S. (Expected 2024.Q3 submission). Small-scale magnetic field generation in the interstellar medium.

Key Tasks: Implemented all the C++17 code to simulate magnetic field physics (ideal MHD physics), rigorously tested the solver's stability, accuracy and scalability, and wrote the code release manuscript.

- 4. <u>Kriel, N., Krumholz, M. R., James R. Beattie.</u> (Expected 2024.Q3 submission). Curvature statistics of magnetic fields in compressible, Alfvénic plasmas.
- 5. Beattie, J. R., Kriel, N.. (Expected 2024.Q3 submission). Relax & grow-up: the minimum energy state of magnetic fields in small-scale dynamos

Non-Peer Reviewed

1. Beattie, J. R., Kriel, N. (2019). Is The Starry Night Turbulent?. arXiv preprints. arXiv: 1902.03381.

Key Contributions: Implemented a second-order structure function to measure how correlated pixel intensities are as a function of scale-separation in Van Gogh's Starry Night painting, and helped draft the manuscript.